> Sistema Documentação
> Memorial da Educação
> Temas Educacionais
> Temas Pedagógicos
> Recursos de Ensino
> Notícias por Temas
> Agenda
> Programa Sala de Leitura
> Publicações Online
> Concursos & Prêmios
> Diário Oficial
> Fundação Mario Covas
Boa noite
Quarta-Feira , 30 de Abril de 2025
>> Notícias
   
 
As leis do pensamento


Publicado pela revista Ciência Hoje novembro 2004

(Túlio Roberto Xavier de Aguiar – Depto. de Filosofia - Universidade Federal de Ouro Preto)
Muitos filósofos consideram que a unidade fundamental do pensamento é a sentença, como ‘A porta está aberta’ ou ‘Todos os homens são mortais’. Será que os recursos algébricos podem ser aplicados sobre entidades tão distantes daquelas que figuram na matemática? Poderia haver uma álgebra das sentenças e suas partes? Ao responder afirmativamente, George Boole (1815-1864) deu um passo que o qualificaria como criador da lógica matemática. Tal empreendimento foi levado a cabo inicialmente em The mathematical analysis of logic [Análise matemática da lógica], de 1847, e posteriormente em An investigation of laws of thought [Uma investigação das leis do pensamento]. Lançada em 1854, esta obra está completando 150 anos.

O matemático inglês George Boole esteve nas origens da lógica formal contemporânea. Os criadores dessa lógica procuraram tratar seu objeto de estudo tradicional (os argumentos válidos ou corretos) por meio de um aparato semelhante ao da matemática. Três características essenciais dessa disciplina inspiraram uma renovação da lógica: o uso de variáveis para representar certas grandezas, o que dá grande generalidade e agilidade ao pensamento matemático; a idéia, já presente no trabalho de Euclides (c. 450-380 a.C.), de que é possível dispor certo corpo de conhecimento na forma axiomática (no campo da geometria, o matemático grego mostrou que as verdades podiam ser deduzidas a partir de uma pequena lista de verdades fundamentais, os axiomas ou postulados); a concepção de cálculo, de um procedimento mecânico e automático para a realização de operações.

Todos devem se lembrar dos procedimentos para efetuar multiplicações, somar frações e extrair raízes, entre outras operações. Tais procedimentos, também chamados de algoritmos, têm grande importância na programação dos atuais computadores. Unido a tudo isso está um dos mais caros sonhos da filosofia moderna, presente de forma mais explícita na obra do filósofo e matemático alemão Gottfried W. Leibniz (1646-1716), de se produzir uma linguagem completa e automática para o pensamento humano. A certa altura, Leibniz expressa a esperança de que um dia poderíamos, para cada questão posta pela mente humana e que suscitasse dúvidas, responder: “Calculemos!”. Com essas observações, temos os elementos básicos para compreender a obra de Boole.

O pensamento de Boole é beneficiado pelo grande desenvolvimento da álgebra de sua época e, principalmente, pelas concepções do matemático inglês George Peacock (1791-1858). Esse autor fez pela álgebra o que Euclides fez pela geometria – foi o primeiro a pensar que a álgebra podia ser organizada dedutivamente. Peacock avançou essa idéia na obra A treatise on algebra [Um tratado de álgebra], de 1830. É curioso que só a essa altura da história se tenha realizado o que Euclides já havia proposto para a geometria no século 3 a.C. Isso se deve, provavelmente, ao fato de que somos muito mais familiarizados com as operações numéricas do que com as relações geométricas. Quanto mais familiares e automáticas são as operações em um certo domínio, mais difícil se torna explicitar as propriedades que as governam. Como, inicialmente, as operações algébricas são modeladas sobre operações aritméticas, não transparece a necessidade de organizar nosso conhecimento na forma de regras explícitas. Mas Peacock conseguiu avançar para além de nossos hábitos arraigados, criando demanda para codificação das propriedades das operações algébricas.
Leia a íntegra em:

http://cienciahoje.uol.com.br/view/2948

Ciência Hoje

Para mais informações clique em AJUDA no menu.

 





Clique aqui para baixar o Acrobat Reader